Followers

Sunday, 30 August 2009

Genes and Genome

Genomic DNA is located in the cell nucleus of eukaryotes, as well as small amounts in mitochondria and chloroplasts. In prokaryotes, the DNA is held within an irregularly shaped body in the cytoplasm called the nucleoid.[65] The genetic information in a genome is held within genes, and the complete set of this information in an organism is called its genotype. A gene is a unit of heredity and is a region of DNA that influences a particular characteristic in an organism. Genes contain an open reading frame that can be transcribed, as well as regulatory sequences such as promoters and enhancers, which control the transcription of the open reading frame.

In many species, only a small fraction of the total sequence of the genome encodes protein. For example, only about 1.5% of the human genome consists of protein-coding exons, with over 50% of human DNA consisting of non-coding repetitive sequences.[66] The reasons for the presence of so much non-coding DNA in eukaryotic genomes and the extraordinary differences in genome size, or C-value, among species represent a long-standing puzzle known as the "C-value enigma."[67] However, DNA sequences that do not code protein may still encode functional non-coding RNA molecules, which are involved in the regulation of gene expression.[68]


T7 RNA polymerase (blue) producing a mRNA (green) from a DNA template (orange).[69]Some non-coding DNA sequences play structural roles in chromosomes. Telomeres and centromeres typically contain few genes, but are important for the function and stability of chromosomes.[43][70] An abundant form of non-coding DNA in humans are pseudogenes, which are copies of genes that have been disabled by mutation.[71] These sequences are usually just molecular fossils, although they can occasionally serve as raw genetic material for the creation of new genes through the process of gene duplication and divergence

Sunday, 23 August 2009

Sex determination Chromosome

XX/XY sex chromosomes
The XX/XY sex-determination system is the most familiar sex-determination systems, as it is found in human beings, most other mammals, as well as some insects. However, at least one monotreme, the platypus, presents a particular sex determination scheme that in some ways resembles that of the ZW sex chromosomes of birds, and also lacks the SRY gene, whereas some rodents, such as several Arvicolinae (voles and lemmings), are also noted for their unusual sex determination systems. The platypus has ten sex chromosomes; males have an XYXYXYXYXY pattern while females have ten X chromosomes. Although it is an XY system, the platypus' sex chromosomes share no homologues with eutherian sex chromosomes. [1]. Instead, homologues with eutherian sex chromosomes lie on the platypus chromosome 6, which means that the eutherian sex chromosomes were autosomes at the time that the monotremes diverged from the therian mammals (marsupials and eutherian mammals). However, homologues to the avian DMRT1 gene on platypus sex chromosomes X3 and X5 and suggest that its possible the sex-determining gene for the platypus is the same one that is involved in bird sex-determination. However, more research must be conducted in order to determine the exact sex determining gene of the platypus.


In the XY sex-determination system, females have two of the same kind of sex chromosome (XX), while males have two distinct sex chromosomes (XY). Some species (including humans) have a gene SRY on the Y chromosome that determines maleness; others (such as the fruit fly) use the presence of two X chromosomes to determine femaleness. The XY sex chromosomes are different in shape and size from each other unlike the autosomes, and are termed allosomes.

XX/X0 sex determination
X0 sex-determination system
In this variant of the XY system, females have two copies of the sex chromosome (XX) but males have only one (X0). The 0 denotes the absence of a second sex chromosome. This system is observed in a number of insects, including the grasshoppers and crickets of order Orthoptera and in cockroaches (order Blattodea).

The nematode C. elegans is male with one sex chromosome (X0); with a pair of chromosomes (XX) it is a hermaphrodite.

ZW sex chromosomes
ZW sex-determination system
The ZW sex-determination system is found in birds and some insects and other organisms. The ZW sex-determination system is reversed compared to the XY system: females have two different kinds of chromosomes (ZW), and males have two of the same kind of chromosomes (ZZ). In the chicken, this was found to be dependent on the expression of DMRT1.[3]

Haplodiploidy
Main articles: Ploidy and Haplodiploid sex-determination system
Haplodiploidy is found in insects belonging to Hymenoptera, such as ants and bees. Unfertilized eggs develop into haploid individuals, which are the males. Diploid individuals are generally female but may be sterile males. Thus, if a queen bee mates with one drone, her daughters share ¾ of their genes with each other, not ½ as in the XY and ZW systems. This is believed to be significant for the development of eusociality, as it increases the significance of kin selection. This[clarification needed] is common also in wasps that are parasitic and in the male greenflies.